

19 juni 2025 | Groningen

counce Borners

New Energy Forum 2025

Methane splitting: a dual opportunity for clean hydrogen production and carbon utilization

19-06-2025

Dr. Margot Olde Nordkamp Dr. Benno Aalderink Dr. Joris Schouten Dr. Simon Hageman

The need for alternative clean hydrogen production

PLIED SCIENCE

Methane splitting into hydrogen and solid carbon

Opportunities:

 \checkmark

 \checkmark

- No CO₂ emissions.
- Low energy consumption (15 kWh/kg H₂ vs. 50 kWh/kg H₂ for water electrolysis)
- Negative CO_2 emissions with biomethane as input gas
 - Carbon byproduct with high quality and purity

Methane splitting into hydrogen and solid carbon

Opportunities:

- No CO₂ emissions.
- Low energy consumption (15 kWh/kg H₂ vs. 50 kWh/kg H₂ for water electrolysis)
- Negative CO_2 emissions with biomethane as input gas
 - Carbon byproduct with high quality and purity

Challenges:

 \checkmark

✓ High CAPEX costs

- **Å**,
- Heavily reliant on revenues from solid carbon by-product

Carbon as valuable by-product

UNIVERSITY OF APPLIED SCIENCES

graphite

activated carbon

Source: Hydrogen Europe, Intratec 2024

Examples of carbon applications

Innovatiemotor van de groenewaterstofeconomie

Carbon for soil improvement

Effects biochar in soil

-20

yield (129,546) 2020yield temperate agriculture(44,598) 2017yield tropical agriculture (62,527) 2017yield through biochar + fertilizer (56,264), 2020agriculutural productivity (153,1254), 2020yield through biochar co-composting (14, n/a) 2019root growth (136,2108) 2019tree growth (17, n/a) 2015microbial biomass (50,395) 2015microbial biomass (72,964) 2020enzyme activity (72,964) 2020microbial activity (49,265) 2018microbial biomass (97,1073) 2017legume N-fixation (4,25) 2018soil organic carbon (50,395) 2015negative priming (27,1170) 2018heavy metal uptake (97,1813) 2018-CH4-emissions (42,189) 2016-CH4-emissions (n/A, 204) 2020-N2O-emissions (88,608) 2019-GHG-emissions (129,444) 2020nitrate leaching (88,120) 2019photosynthesis capacity (74,347) 2020water use efficiency (74,347) 2020plant available water (34,74) 2016water use efficiency (43,284) 2020plant available water (82,176) 2020plant available phosphorus (124,n/a) 2019-N-loss during composting (114,532) 2020-NH3-loss (41,144) 2019-

value improvement in % Source: Agroscope, Schmidt (2021) [1] Prohaska, 2024

80

- > Manure digestion \rightarrow biogas (CH₄) as input gas
- Increase organic matter content, water and nutrient retention, and carbon sequestration.
- > Contributes to circular agriculture.

Preliminary results:

- No toxic compounds
- High water holding capacity
- Enhanced plant growth under drought conditions^[1]
 - Pot and field experiments with WUR

Conclusions

Bl@gas

- Methane splitting promising way to produce clean hydrogen and carbon
- LCOH largely dependent on carbon revenues and electricity price
- Carbon suitable for variaty of applications

Innovatiemo

aroenewaterstofe

• Carbon shows potential in soil enhancement

Thank you! Questions?

noord

